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This two-part article presents the model-based optimisation algorithm “mbminimize”. It
was developed in a corporate project of the University of Tübingen and the BMW Group
for the purpose of optimising internal combustion engines online on the engine test bed.
The first part concentrates on the basic algorithmic design, as well as on modelling,
experimental design and active learning. The second part will discuss strategies for deal-
ing with limits such as knocking.

1  Introduction

Manufacturers of modern internal combus-

tion engines are confronted with increas-

ing challenges: The legal restrictions con-

cerning exhaust emissions are getting

stricter, fuel is becoming more expensive

and customers are demanding powerful

and comfortable engines with low fuel con-

sumption. As a result, engine complexity

has greatly increased, as has the number of

adjustable parameters. Tuning the engine

thus results in a complex optimisation

problem, whose solution requires the aid of

computers.

The application of computer-aided of-

fline optimisation has become common.

Such approaches are presented, for exam-

ple, in [1], [2] and [3]. They rely on the fol-

lowing principle: On the basis of an experi-

mental plan, a sufficiently large number of

measurements are performed at the test

bed. This data, possibly combined with pre-

vious knowledge, is used to calculate a

computer model that simulates the engine.

This model can then be optimised by ap-

propriate algorithms. The optima are again

verified at the test bed and finally used for

tuning the engine.

In the online optimisation, the optimisa-

tion system directly interacts with the test

bed, which means that, in the ideal case,

the process is fully automatic. This ap-

proach carries the further advantage that

information gained by measurement can

be evaluated immediately. This point will

be discussed in detail in sections 3 and 4. Of-

fline optimisation, on the other hand, has

the advantage that the computation time

can be completely separated from the test

bed, i.e. the test bed can be used manually

during the computations. The automatic

test bed control with appropriate limit han-

dling poses new challenges to the algo-

rithms. This issue will be discussed in the

second part of this article.

Some online optimisation systems are

currently available, e.g. Cameo [4] and Vega

[5]. This report introduces a new online op-

timisation algorithm, mbminimize. It dif-

fers from the known algorithms in several

points:

■ Modelling: A global model is used in-

stead of distinct models for each operating
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point. Thus, the information gained by one

measurement has an influence on several

operating points, thus reducing measure-

ment costs.

■ Model types: A heterogeneous commit-

tee containing neural networks and cubic

regression models is used.

■ Experimental design: The model itself

determines the experimental design (active

learning), and the influence of the objective

of the optimisation is increased over time.

■ Limit handling: New strategies are de-

veloped. They not only allow the approxi-

mation of infeasible areas in an approxi-

mate way, but also ensure that the engine

is reset to safe parameters when a limit oc-

curs (see the second part of this article).

2  Requirements

This article concentrates on the following

parameterised optimisation problem that

we call "full factorial tuning”. For each op-

erating point, one or more parameter com-

binations for the actuators are requested in

such a way that a given objective achieves

an optimum, e.g. minimum fuel consump-

tion. For this purpose, some particularities

of internal combustion engines have to be

considered:

■ Measurements at the test bed are expen-

sive and time-consuming. Therefore, a min-

imum number of measurements are desir-

able.

■ Measurement results are corrupted by

noise. Thus, noise handling is important.

■ Changing actuators may require a stabil-

ising interval of a considerable duration.

Therefore, changes in the operating point

in particular should occur as rarely as possi-

ble.

■ There are limits, i.e. constraints, for the

optimisation.

■ Safe optima are of particular interest, i.e.

optima that possess a large neighbourhood

of good objective values.

Because of these points, the new algo-

rithm described in this report is designed as

a model-based optimisation algorithm. The

global model is defined on the whole search

space that is spanned by the operating

plane and the actuator dimensions. Thus,

the number of measurements is kept to a

minimum, and the model allows noise han-

dling. Two model types are used: linear pa-

rameterised and non-linear regression

models. For linear parameterised models,

the model output is a linear combination of

(non-linear) basis functions. For example,

polynomials of a maximum third degree

define the well-known and widely used cu-

bical model. Here, the model output always

depends linearly on the vector of free para-

meters. For a given data set of measure-

ments, the optimal parameter vector is eas-

ily estimable if the square error is to be

minimised.

Non-linear models on the other hand are

non-linear in the parameter vector, too.

This results in considerably higher flexibili-

ty. The optimum parameter vector now has

to be determined by means of non-linear

optimisation, so called training. Moreover,

the optimum parameter vector is no longer

unique, and the model can easily be fitted

to the noise rather than to the true func-

tion. This is called overfitting. Therefore,

appropriate regularisation techniques are

indispensable (see for example [6]). A par-

ticular type of non-linear model is the feed-

forward network, a subclass of artificial

neural networks (see [7]). This model type is

used for the algorithm presented here.

3  Active Learning

Considering the high search space dimen-

sion and the expense of each single mea-

surement, the central problem of engine

optimisation is clearly the experimental de-

sign. This means performing a minimum

number of measurements in order to gain

maximum information. The information

gain is normally quantified by means of

statistics, and there are many different

methods and a broad range of literature

available in this field, for example [8].

An important class of experimental de-

sign methods makes use of the model itself.

This is done by evaluating the uncertainty

of the model on the search space. Different

design criteria already arise at this point.

One could, for example, try to minimize the

average uncertainty or, alternatively, the

maximum uncertainty of the model.

The model uncertainty at a given point

in the search space depends on the model.

For example, the uncertainty of a linear

model always attains its maximum at the

search space boundary, Figure 1. On the

other hand, an optimum experimental de-

sign contains only boundary points in this

case. These considerations can be extended

to linear parameterised models, such as cu-

bical models. The model uncertainty at a

given point can be expressed by a term that

depends on the model and on the actual

measurement points (see [8]). An impor-

tant and easy to evaluate optimality criteri-

on is satisfied if the determinant of the so-

called information matrix is at the maxi-

mum. Such experimental designs are also

called D-optimal, and under certain condi-

tions this is equivalent to minimizing the

maximum uncertainty on the search space

(see [8]).

It is striking that the measurement re-

sults do not occur anywhere in this repre-

sentation of the model uncertainty. This

means that an optimum design can already

be calculated at the beginning, and cannot

be improved by the information gained by

measuring. In other words, this theory

favours offline optimisation. This situation

is fundamentally changed if non-linear

models are considered. In this case, the un-

certainty can be expressed by means of an

information matrix as well, which now de-

pends on the training results, i.e. it depends

on the results of the measurements (see

[9]).

If non-linear models are used for ap-

proximating the objective function, an on-

line experimental design is appropriate for

exploiting the information gained by mea-

suring for the purpose of optimally placing

new measurements. We therefore consider

the following situation: Given some mea-

surement data and a model, we look for a

new point in the search space that is to be

determined in order to maximise the ex-

pected information gain by measurement.

This scenario is referred to as active learn-

ing or query, since it is the model itself that

decides which point is to be the next one to

be trained. A possible criterion is maximis-

ing the model uncertainty, which is given

by the information matrix and the point.

This is again closely linked to D-optimality.

Figure 2 shows an example. The uncertain-

ty of the model (here an artificial neural

network) is large in regions with a low data

density.

There are several variants of this criteri-

on (see e.g. [9], [10]) that are obtained under

slightly different theoretical assumptions.

They behave in a very similar way in prac-

tice. However, these methods tend to be-

have unfavourably if the normality as-

sumption is not fulfilled. The accuracy of

the uncertainty estimate is increased by

taking large samples of model parameters

according to their true probability distribu-

tion. These Markov Chain Monte Carlo

(MCMC, see e.g. [11]) methods require a

large amount of computation time.

A further possibility is to use a commit-

tee of models. This has several benefits. The

expected error is smaller than for single

models, different model types can be con-

sidered simultaneously (heterogeneous

committees) and the model disagreement

(i.e. the variance) of the output of the com-

mittee members can be used as an estimate

for the model uncertainty, i.e. as a query cri-

terion. This query by committee (QBC) crite-

rion (see e.g. [12]) was superior to other cri-

teria in our empirical studies (see [13]) and

can be evaluated very quickly. Therefore, it

is used in the new algorithm. For homoge-

neous committees, the QBC criterion can be

interpreted as a variant of an MCMC

RESEARCH Calculation and Simulation
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method. Each committee member is a sam-

ple of the parameter vector, and the proba-

bility distribution is biased toward its

peaks because of the training. Moreover,

the use of a heterogeneous committee re-

duces the probability of a completely incor-

rect model output in spite of a good fit due

to an inappropriate model type. Figure 3

shows a committee consisting of a linear

model and a neural network. Figure 4 illus-

trates the output of such a committee and

the disagreement of the committee mem-

bers, i.e. the QBC criterion.

In the course of the optimisation, not

only the model uncertainty but also the ap-

proximated objective should be incorporat-

ed into the query criterion to an increasing

degree. In this way, the search space is ex-

plored more thoroughly in regions with

good objective values, and the optima are

localised with greater precision. This is im-

plemented in the presented algorithm by

excluding parts of the search space with an

estimated objective value below a thresh-

old.

The mbminimize algorithm is started

with an initial experimental design that is

computed according to space-filling or D-

optimal criteria. Its order is optimised by

the methods described in [14]. After that,

further measurement points are deter-

mined via active learning, then arranged

optimally if necessary and used for measur-

ing. Finally, the approximated optima are

computed and verified.

4  Conclusions

The mbminimize algorithm has been test-

ed thoroughly by means of benchmark

functions and simulations and has proven

to be quite powerful and efficient. For ex-

ample, all three optima of the Branin func-

tion (see [15]) are correctly localised with

less than 40 function evaluations. Initial

experiments at the engine test bed yielded

promising results.

By using a global model and sophisticat-

ed online experimental design techniques,

in particular active learning, the mbmini-

mize algorithm presented in this report is

able to drastically reduce the number of

function evaluations compared to common

optimisation algorithms. The approach al-

lows a large variety of extensions and com-

binations with other methods. For exam-

ple, other model types can be incorporated.

Another possibility is enhancement by

multi-criterion techniques for optimising

several objectives. In the second part of this

article, we will present the handling of lim-

its and constraints.
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