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The first part of this two-part article introduced the basis of the mbminimize algorithm,
which was developed by the University of Tübingen in cooperation with the BMW Group
for the model-based online optimisation of internal combustion engines. This second part
describes its extensions regarding the handling of engine limits such as knocking. The
main focus is on the construction of special mathematical models for these limits that
make it possible to successively and controllably restrict the search space.

1  Introduction

In recent years, the number of adjustable

engine parameters has been drastically in-

creased in order to meet both the legal re-

quirements and the customers' demands.

For that reason, offline optimisation was

established as a powerful method for the

calibration of the engine control units. It

performs a separation between test bed

measurements and computer-aided data

evaluation (see [1], [2] and [3] for this topic).

Nowadays, car manufacturers strive to

achieve fully automated engine calibration

directly at the test bed. Already existing on-

line optimisation tools on the automotive

market are CAMEO [5] and VEGA [6]. In the

first part of this article [4], the mbminimize

algorithm was introduced as an online opti-

misation algorithm. Its underlying idea is

the use of information obtained by measure-

ments for the further process. This procedure

is known in the literature as Active Learning

or Query. The information gain that can be

obtained by the subsequent measurement is

quantified by means of the actual objective

function models. The points in the search

space that maximize this so-called query cri-

terion are measured next at the test bed. 

In offline optimisation systems, engine

limits are usually treated by models and

the search space that is restricted as a re-

sult. Manual verification measurements at

test beds guarantee that optimum candi-

dates that violate certain limits are discov-

ered, thus avoiding engine damage. The sit-

uation is quite different when the direct op-

timisation of the engine at the test bed in

an online process is considered. Known pro-

cedures for the restriction of the search

space appear to be both too restrictive and

too little merged with the online optimisa-

tion algorithm. 

This article describes the process of lim-

it handling within the mbminimize algo-

rithm. It consists of a controlled reaction to

limit violations and robust limit model-

ling.

Figure 1 shows an example of a geomet-

rically constrained search space. Using the

measured violation points only, the pure

star-shaped hull model is expanded by a

controllable restrictivity. This increases the

probability of finding optima close to the

search space borders. It is known from ex-

perience that very good values for fuel con-

sumption and exhaust emission are often

obtained in such regions. 
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2  Classification of Limit 
Violations

The most important requirement for limit

handling within an online optimisation

process is the controllable reaction to de-

tected limit violations. The engine must be

driven back into secure regions of the

search space by a robust adjustment strate-

gy as fast as possible. In order to avoid fur-

ther limit violations, it is necessary to iden-

tify the feasible search space as accurately

as possible. As a result, the optimisation of

the model for the objective function and

the process of active learning become con-

straint optimisation problems. A continu-

ous real valued minimization problem in d

dimensions with a limited search space is

defined by an objective function f and a

search space S ⊂ ℜ d, which is limited by lin-

ear and non-linear functions, Eq. (1)

The search space S is limited to a hyper-

cube by the vectors xmin and xmax that con-

stituted the physical ranges of the ad-

justable parameters. The matrix A together

with the vector b define static linear limits,

while the functions c(x) define non-linear

limits. Examples of the objective function f

are the fuel consumption that is to be min-

imized or the engine torque that is to be

maximized. Linear limits represent func-

tional dependencies of certain engine para-

meters. Well-known non-linear engine lim-

its are engine knocking, the smooth run-

ning of the engine or the temperature of

the exhaust gas. It is of special importance

for the online optimisation of internal com-

bustion engines that the shape of the func-

tions c(x) is usually unknown before the

process starts. In some cases, test bed engi-

neers may have experience that might be

transferred from earlier engine genera-

tions. Thus, these limits represent the

greatest challenge to an online optimisa-

tion system. 

The engine limits can be classified into

three main classes: the static and the dy-

namic non-linear limits, whereby the latter

are further split into hard and soft limits.

The name dynamic suggests that the infor-

mation on these limits must be dynamical-

ly increased during the process. The models

used for these limits need to be refined con-

tinuously for the restriction of the search

space. Hard and soft refer to the high or rel-

atively low risk of possible damage to the

engine. 

Class 1: Static (Non-)Linear Engine Limits

Before the online optimisation process

starts, there already exist static linear and

non-linear limits of the search space that

will not change during the process and

which are well known. These limits can be

integrated into the optimisation process

without modelling. 

Class 2: Hard Dynamic Engine Limits

Members of Class 2 limits restrict individ-

ual dimensions of the search space. The

standard example is engine knocking,

which is usually caused by too advanced ig-

nition, thus a too large value for the igni-

tion angle. The critical non-linear threshold

can be set as a function of the remaining 

d-1 parameters, Eq. (2). 

The original hypercube is limited by this

function in either the positive or the nega-

tive direction in the dth dimension (here,

this is the dimension of the ignition angle).

The function c(x) defined in Eq. (1) is given

by Eq. (3).

Consider the positive direction. If c(xi) is

greater than zero, then a limit violation is

given at xi. Because of the small number of

measured violation points, models for this

class of limits run the risk of defining parts

of the search space as non-feasible in an

uncontrolled way (see Figure 1, left). In sec-

tion 3.2, confidence models and hull mod-

els that show controllable restrictivity are

described. 

Class 3: Soft Dynamic Engine Limits

Soft dynamic engine limits are search

space limits that are defined by thresholds

for secondary objective functions, for ex-

ample for the exhaust emissions. As in the

primary objective function f, these func-

tions usually depend on all engine para-

meters. Class 3 limits are described by a

critical threshold L0 and a function L(x) of

all parameters x. In Eq. (4), there is a limit

violation at xi. 

The value of the function L is measured

at each measuring point at the test bed. As

a result, a relatively large amount of data is

available to build a model. Further exam-

ples of Class 3 limits are the smooth run-

ning of the engine based on the variance of

the indicated average pressure within the

cylinder, and the exhaust gas temperature.

As in the primary objective function, suit-

able models for this limit class are regres-

sion models. These are also discussed in

section 3.2. 

3  Influence of Limit Handling
on the Online Optimisation

Functions of the mbminimize algorithm

that have to be added and/or adapted are

the limit handling itself and the query and

optimisation functions. In the last two

functions, the information about the feasi-

ble search space determined in the limit

handling is used to select feasible measur-

ing points for the limit models.

The mbminimize algorithm offers the

possibility to work with a robust star-

shaped straight adjustment strategy. Op-

tionally, this strategy can be expanded by

an optimisation of the adjusting path (see

section 4) in order to move around already

known limits. Only in the case of a new lim-

it violation will the secure central point be

used to stabilize the process. From the ini-

tial processing of the first design of experi-

ments, the limit handling reacts to detected

limit violations and computes models to

define the non-feasible search space.

3.1  Limit Handling
The limit handling contains the limit mon-

itoring module, in which signals from the

test bed concerning limit violations are

evaluated. An intermediate point that has

been previously passed is supplied as a se-

cure point and given back to the test bed

automation system after a possible viola-

tion. The step back strategy is repeated if

necessary in order to handle hysteresis ef-

fects. 

The main goal is to identify the feasible

search space that is as accurate as possible.

A detected limit is therefore measured in

two steps. First, a further approximation

with a reduced step size takes place. If a

limit violation occurs for the second time,

the current point is defined as the bound-

ary between the feasible and non-feasible

region. This point is subsequently used to

build a limit model. In the second step, the

path planning, a 3-back-2-forward-strategy

also with a small step size, is performed.

Thus, a point that is sufficiently close to

both the limit and the desired measuring

point is measured.

3.2  Models for the Search
Space Limits
As described in [4], the primary objective

function is generally modelled by a regres-

sion model. The main focus lies on the glob-

al model quality and not on the accurate

description of single measured function

values. This also applies to soft engine lim-

Eq. (1)

Eq. (2)

Eq. (3)
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its of Class 3. Because of the much smaller

number of measured points for Class 2 lim-

its, the situation there is totally different.

The small number of violation points must

be taken into account by the model in order

to avoid further limit violations within

these regions. Thus, the models for the two

classes must fulfil significantly different re-

quirements. For Class 2 limits, confidence

models such as RBF-max networks and con-

fidence networks are considered. In addi-

tion, different hull models are suitable. Re-

gression models such as neural networks

[7] are used for modelling Class 3 limits. 

3.2.1  Models for Class 2 Limits
Star-shaped Hulls:

Figure 1 shows the pure star-shaped hull

model that precisely reproduces limit viola-

tions. However, large regions between the

points of violation are rejected without

control. This problem can be eliminated by

adding a grid of points on the edge of the

hypercube. 

Confidence Models:

A limit to the search space such as engine

knocking can be modelled using Eq. (3) and

setting a function for the critical ignition

angle depending on the remaining d-1 pa-

rameters. Confidence models are character-

ized by the fact that they are quite restric-

tive in regions that contain violation

points, whereas they do not make a state-

ment within ranges without data. 

The name of the RBF-max network al-

ready indicates that it is based on an RBF

network [7], and the activation function of

the output neuron computes the maxi-

mum of its weighted inputs. On the left,

Figure 2 shows an example of an RBF-max

network and on the right it shows the out-

put of two RBF-max networks for limit vio-

lations xi. 

Confidence networks can be formulated

as a product of a regression model h(x) for

the search space limit and a confidence

term conf(x), Eq. (5).

The confidence term has the property

that its output values are close to one for

points close to violation points xi and close to

zero for distant points. The left part of Figure

3 shows the regression models, the middle

part shows the confidence terms and the

right part shows the resulting output of the

confidence networks for two limits. 

Both the RBF-max networks and the con-

fidence networks restrict the search space in

a more controllable way than the pure star-

shaped hull shown in the left part of Figure 1.

The restrictivity can be adapted in each case

by parameters. However, RBF-max networks

and confidence networks can define regions

of the search space that cannot be reached

on a straight line. With the aid of the opti-

mised path planning described above, such

points can be measured. 

Hull Models:

Hull models are also suitable for the repre-

sentation of hard limits. They work best in

connection with a star-shaped straight-line

adjustment strategy. Unlike confidence

models, hull models are able to consider dif-

ferent Class 2 limits at the same time. Fur-

thermore, they avoid the definition of re-

gions that cannot be reached on straight

lines. Hull models, such as the pure star-

shaped hull in the left part of Figure 1, or

convex hulls usually cut the search space in

an uncontrolled way. A controllable restric-

tion is also desirable here. Figure 4, left,

shows a ”potato“ model that has been mod-

ified again by confidence terms in order to

obtain the feasible search space on the

right. Parameters of the confidence term al-

low the controllability of the restriction.

An edge and corner cutting procedure is

shown in Figure 5. First of all, the facets are

computed to cut the corners and edges of the

hypercube. This leads to facets perpendicular

to the connecting distance between the cen-

tral point and the violation point. The dark

grey areas in the left part show the non-feasi-

ble areas thus obtained. In order to make the

procedure less restrictive, only those parts of

the hyperplanes that lie close to a violation

point are considered. This modification is

shown in the right part of the figure.

3.2.2  Models for Class 3 Limits
In this section, models for soft engine limits

such as the smooth running of the engine

and the exhaust gas temperature are de-

scribed. The true function is approximated by

a regression model depending on all engine

parameters. Polynomial models and neural

networks ([7]) are used in particular. Figure 6

shows an example of a model for a feed-for-

ward network net with one hidden layer of

neurons. The soft limit L(x) in Eq. (4) is mod-

elled by a neural network. If c(xi)>0 in Eq. (4)

there is a limit violation in positive direction. 

Figure 7, left, shows the shape of the mod-

el for a possible Class 3 limit and the corre-

sponding threshold L0, in which the function

is approximated by a neural network that

was trained with the measuring points

marked in black. Regions of the search space

in which the function runs above the thresh-

old define the non-feasible range (black

points in the right part of Figure 7). 

The measured signals for soft limits usu-

ally change very slowly, which makes the

corresponding limit handling more compli-

cated. In addition, models for Class 3 limits

are able to define search spaces with non-fea-

sible islands in them, Figure 7, right. The use

of optimised path planning as described

above also helps in this situation. 

4  Optimised Path Planning

As mentioned above and as shown in Figure

7, limit models can form feasible regions of

the search space that cannot be reached on a

straight line. In those situations, it might be

desirable to modify the pure straight-line

path planning in order to reach such regions.

With the aid of classic optimisation algo-

rithms for general problems of non-linear

programming (SQP procedure), curved paths

through the search space are computed. The

current state of the limit modelling is used

for this purpose. Figure 8 shows two possible

optimised paths that are finding a way

through a limit landscape.

5  Summary

This article describes the process of limit han-

dling integrated into the mbminimize algo-

rithm. It consists in particular of a controlled

reaction to limit violations and a robust limit

modelling. The algorithm was examined

with the aid of numerous test scenarios. Both

the adjustment strategies – especially the op-

timisation of the path planning – and the

limit models described here proved to be very

efficient for the automated test bed applica-

tion. Beyond that, the first attempts at imple-

menting the real system were accomplished,

and these are very promising. 
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